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EIGENVALUES OF PERIODIC STURM-LIOUVILLE PROBLEMS 
BY THE SHANNON-WHITTAKER SAMPLING THEOREM 

AMIN BOUMENIR 

ABSTRACT. We are concerned with the computation of eigenvalues of a peri- 
odic Sturm-Liouville problem using interpolation techniques in Paley-Wiener 
spaces. We shall approximate the Hill discriminant by sampling a few of its 
values and then find its zeroes which are the square roots of the eigenvalues. 
Computable error estimates are provided together with eigenvalue enclosures. 

1. INTRODUCTION 

We would like to introduce a new method for computing the eigenvalues of 
classical regular Sturm-Liouville problems with periodic boundary conditions 

( 
, 

-p"(t, ,u) + Q(t)(p(t, A) = At2p(t, ,u) t E [0,] 
(1.1) l (0,u) = o(W,u) and p'(0,,u) = p'(,u), 

where Q(t) E L1 (0,w). For the spectral theory of periodic differential equations, 
we shall refer to [4], [1] and [8]. Recall that in general the spectrum of (1.1) may 
not be simple as in the case of separated boundary conditions, and this is a major 
difficulty. 

In this work, we shall extend the method in [3], which relies on the interpola- 
tion in Paley-Wiener spaces of a certain boundary function, whose zeros are square 
roots of eigenvalues. In our case the boundary function turns out to be the well- 
known Hill discriminant (see [4]) and only few values are needed for its approxima- 
tion. The truncation error can be minimized by increasing the number of sampling 
points, which gives higher accuracy on the numerical side and provides eigenvalue 
enclosures. We shall examine a few examples, where eigenvalue enclosures and com- 
parisons of the results with the well-known code Sleign2 are provided. In the last 
example our interpolation scheme is compared with an "exact" solution. One of the 
features of the method is the possibility of locating double eigenvalues. Indeed, by 
minimizing the truncation error, we can zoom in on close eigenvalues, and if they 
happen to be simple, then we can find two disjoint enclosures separating them. 

2. HILL'S DISCRIMINANT 

The Hill discriminant, which is at the heart of the spectral theory of the periodic 
Sturm-Liouville operator, is defined by 

/\(,U) : p1(w, p) + (p() ) 
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where foi(t, ,u) and (p2(t,,u) are two independent solutions of (1.1) satisfying 

(2.1) 
f 

(010, A) I and { fO2(O,I) O 

Recall that ,u2 is an eigenvalue associated with (1.1) if and only if ,u is solution of 

(2.2) A (,u) = 2 

(see [4]). In order to interpolate the Hill discriminant we shall need to find a suitable 
representation in terms of analytic functions. 

From the inverse spectral theory (see [7]) (pj(t, At) and (p2(t, At) can be represented 
by 

t 
(2.3) 0p1 (t, A) cos t,u + j K (t,rj) cosr,u dr, 

p2 (t, A) = itAt + K2 (t in) ?1Atdq 

where K1 and K2 are the kernels of transformation operators. We recall that K1 
and K2 have m + 1 locally integrable derivatives if Q has m locally integrable 
derivatives. In our case m = 0, which means that a K2 and a K1 are locally 
integrable and K1 and K2 are continuous functions. Thus the integrals in (2.3) are 
well defined. The Lyapunov function or Hill's discriminant for (1.1) can now be 
described using K1 and K2: 

(2.4) A(,u) = p1(w,)?+S(wA) 
sin WAtL sin WAtL 

2cos wA+K1(,w,w) +K2(W,w) 

+ /;[0K2 () + aKi (w,q)] dq. 
At atAt 

Let us agree to denote the last integral term by 

0 (\1 sinq1/ (2.5) S(A) := j [t K2(W,r) + -Kl(, ) dA 

and several useful constants by 

sin z exp (ImzI ) 

<C 

q : I j Q() I dr 

and 

We now recall that Paley-Wiener spaces are defined by 

PW :={F(,u) entire: IF(t)l < Mew 17rIml and j F()22dy < oo}. 

Also (see [7]) 

Ki(w,w) = K2(Q,) = 2 Q)d 
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Thus in order to recover 

(2.6) A\(u) 2 cos (wA) + 
sin 

j Q(ri)dr d+ S(,u) 

we need to find S(,u) only. 

Proposition 2.1. If Q(t) e L1(0,w), then 

S(y) e PW, and E1:= j AtS(y) 2dy < (c2q2 2 

Proof. Because Q(t) is locally integrable, it follows that [-a-K2 (W,r) + tK1 (w, )] 
is also locally integrable, and applying the Riemann-Lebesgue theorem to (2.5) we 
deduce that S(,u) = o(1), i.e., S(,u) c Ld(-oo, oo). Next observe that 

I w & & ~~~~~cr7 exp (r7ImIT) 
S(C) ' at K2 (W,q) + at K, (w ) l +r IA l dr 

< fWat K2(W )+ atKi(w,n) I + I dr exp(wIm,u) 

< Ciexp(w Im,up ). 

Hence S(,u) c PW,. If C1 is known, then we can estimate the constant E1, 
which is crucial in the computation of error bounds. To this end we shall use the 
following integral equations (see [10]): 

(2.7) (pi (t, [) cos(t,u) + Tol (t-, ,u), 

902 (t, IL) 
sin (t[) + T 2 (t, )) 

where 
TA, 

C (O, CA WO ), 

t si(( t E 0, 

(2.8) 1TA I 
j +w 1 Q|(,u) I dr 

l+Atw 

For ,u large enough, the method of successive approximation yields (see [10]) 

p1 (t, A) = Tcos (t,) and (p2 (t, A) = EZTmsinr1 
n>0 n>0 

and by the Gronwall lemma applied to (2.7) we obtain 

91( ,8)1_ P(t c+ n IQ, I _ (XnQ0I Ipl (t,pt) ?,< exp ( j Q(?7 d) ? exp c(f ,nJQ(rj) 

I(P2 (t, A) ? 
I+ tep + d 

< ct t 
l+AItt 
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Applying TA, to (2.7) yields 

(2.9) p1 (t, [) cos(t[t) + TA, cos(t,u) + T,,2 p1 (t,[t), 

where 

T2oj (w,u) < (c qw)2 
expt crt Q(W7) dr1 

- ( l+~ w) Jo +i 

(c qw)2 exp (cft IQ(q)I dq 

(2.10) < (c qw)2 1 
(1 + W)2 

Similarly we have 

2 (t sin= + Tit si(t T) +T2 2 (t, 

(2.11) o 
(t,l) = cos(t[t) +-dtT sin(t) + dT2(2(t,) (P2 dt~ 

T 

It dt T2(A2(t ) 

where 

dt tI2(W, ) j COS(w - t))Q(t) f sin(1(t - r)) 

< JW 2Q(t) 1 c(t-71) I(P2Q (71) (Pd2,dt + c t (-ry)Q(y 

< I fQ(t) I Q(ry) ( I2, dr1dt 

? &i IQ(? )I jW Q( tl) j Q(c ) 7d1dt 

IQ (1 ) I +z I) IQ (q I dq dt 

(2.12) ?< ?C2q2w2 11 - 

We now use (2.9) and (2.11) to obtain 
= 2co(t) Tc2 st, 2 tT TA2 fl(,,j tT19 t l 

Observe that 

T, cos(t<) + TA Q(tn d) 

- ft (sin(I(t-)) (I ((t - + sinj)) Q(rW) d 

- sin([tt) T j (t) 
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Thus a new representation of the Hill discriminant follows: 

(2.13) 

Aup) =2 cos (t) + in(tt) j Q(q)d + T2 pl (t, u) + T2(t, 

Therefore (2.6) together with (2.13) imply 

(2.14) S(u) = T2 2pl(t, i) +dT2 (2(t,u)) 

and estimates (2.12) and (2.10) yield 

(2.15) Isu) ? 2 (31+[q2co2 

Hence it follows from (2.14) and (2.15) that S([t) E PW, and 

El I AW usU 12 dl < 3(C2q2w 2 < (c 2q2 
f 2 3~~~c2 3 

2 
223 

It is also possible to use asymptotics of solutions (see [5]) to derive the estimates 
above. 

3. GENERAL CASE 

We now address the question of how to apply the idea above to more general 
equations, such as 

(3.1) - (p(x)y'(x, ,))' + q(x)y(x, u) = 
p2s(x)y(x,u), 0 < x < a, 

()ly(O,p )- y(a,p/), p (0) y'(0, ,u) p p(a) y'(a, /1), 

where p(x), q(x), and s(x) are real valued, , q(x), s(x) E L1(0,a) and s(x) > 

0. It is well known that p2 (see [4]) is an eigenvalue of (3.1) if and only if MUn is a 
root of 

(3.2) D(u) := '1P(a,up) + p(a)o/(a, i) = 2, 

where l1(x, ,t) and b2(x, ,t) are two independent solutions of 

(p(x)y'(x, p))' + q(x)y(x, u) = A2s(x)y(x,A), 0 < x < a, 

with initial conditions 

{ 1 (0,) = I and f 02(0,/L) = 0 

l p(O)1(0,) = 0 l p(0)'2 (0,A) = 1. 

It is readily seen that D(G) is an entire function of jt of order one, and the main 
difficulty is estimating its type. Once the type is obtained, which depends on 
p(x), q(x) and s(x), we can apply the above method with a few modifications. 

One simple way to deal with (3.1) is to transform it to the standard form (1.1) 
which is possible when the coefficients 1 and s(x) are C2(0, a), and s(x) > 6 > 0. 
Indeed, the Liouville-Green transformation allows us to recast equation (3.1) into 
an equivalent periodic problem (see [4]) 

(33) { -p"(t, A) + Q(t)p(t, A) = 1t2p(t, A) t E [0, A] 
*t (0, U) = o(A,ii) and p'(0O,u) = Ko'(A, u), 
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where t(x) s ('Ox di7 for x E [0, a] and 

(tx, At) y y(x, p), Q (t (x)) = q (xT- z)-4) dxp(x)dx {p(x)s(x) } 

Clearly the type of D(M) is then A := t(a) and the boundary conditions 

are obtained from y'(x,u) := o'(t(x),,) x, and so K In case 

s(w)p (w) =s(O)p (0), then we have K = 1. 
* If p(x) and s(x) are not smooth, then we can still use ideas from the trans- 

formation operators for the string (see [2]) 

-p(x)(p(x)y'(x,, u)) + p(x)q(x)y(x,, A) = A2p(x)s(x)y(XA) 0 < x < a. 

Then setting t(x) f x 1Qdr7, y t(a) and (p(t(x)) = y(x) we have 

(3?4) - p"'(t, At) + Q(t)M(t, A,) A At2w(t)pO(t, A) 0 < t < -y 

Q(t) := p(x(t))q(x(t)) and w(t) := p(x(t))s(x(t)). 

If the spectrum is bounded from below, then a simple transformnation (see [6], 
p. 90) allows us to recast (3.4) into 

-_V)"(t, /_L) = /_l 
2 () t)E 

and an upper bound for the type of solutions b(t, ,u) is given by 24gJW(t)dt 

(see [6], p. 32). 
* There are other methods which can be used to estimate the type, such as 

semi-classical approximation. The asymptotic distribution of eigenvalues of 
(3.5) depends on the behaviour of the weight W(t) as t -> 0. 

4. SAMPLING 

Proposition 2.1 allows us to use the well-known Whittaker-Shannon-Kotelnikov 
sampling theorem to reconstruct the function S(t) from its samplinig values (see 
[9] ancd [11]) 

S(AU) =E S( 7rSiwp ,l- k7r 
k=-cok 

where S(w ) are obtained by using (2.14) where the values of 

A(k7r k7r ) + kT7r 

are computed by solving the initial value problein defined by (1.1) and (2.1). A 
good approximation of S(,u) can then be obtained using very few points 

SN(H)~ = ,Sk7r) sinl(Lul -k7r) SNQi) E S(kw)silwtw 
k=-N -k7r 

and the truncation error 

IS(et) - SN(I)I < TN (ii) 

can be easily estimated for blt < N7, (see [11]), 

(4.1) TN(AH) F1 2w w/sinwii ( 1 + 1 ) N?1 wW 3 - Nr-wA) ,t N +A} 
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where, by Proposition 2.1, E1 < (c2q2 Tw. It is essential to have an upper bound 
estimate on the magnitude of constant E1 in terms of Q(t) in order to obtain precise 
error bounds on the eigenvalues and possible enclosures. 

The knowledge of S(u) allows us to reconstruct the Hill discriminant A(Q) de- 
fined by (2.6) and then solve (2.2), which we shall agree to write as 

i\ (p) := i\(p) - 2 = O 
to find the eigenvalues for bt,l < N,. It is readily seen that SN(At) helps define an 
approximation to A, 

AN (11) := 2 cos(wlu) + (t) q)j d + SN((A) - 2. 

Let AtN be a solution of A\N (A1N) = 0 and denote by ,u* a solution A(At*) 0. In 
other words (A*)2is an eigenvalue and (IN 2 is its approximation. Since 

AN(11)-A(1) ? TN(At), 

we have 
AN(1) < TN(At*) 

and thus the enclosure is defined by 

(4.2) 1*C IN :={At such that AN (A1) < TN(A1)} 

Observe that the endpoints of I/N are solutions of AN (A)-?TN (ti), and so they 
are computable. 

From the uniform convergence of AN (At) -> A (At), we distinguiish two cases. 

o A1i\(*) -& 0, i.e. ,u* is a simple eigenvalue and so there exists an NO, 

inf N \NO (At) =6(No) > 0 

and VN > NO inf Al (A) > . 
EIe '~N 

Proposition 4.1. Let A* > 0, be a simple eigenvalue of (1.1), then Vc > 0, 
3No such that VN > NO, 1AtN such that 

C 
At* - AN| < 
11,~~~ CN I < inf A'T(t 

/IIN 

Proof. Given At*, we can find N, such that A* < N, inf 2\> (A) > 6 > 0 and 

TN(At) < E for A C '1N From A\N(/Qt) -7\N(AN) < TN(p<), the mean value 
theorem implies 

(4.3) - AtN) A\N(r) < TN(I1 ), ri C (11, ALN) C IN 

and since At* is simple, inf A' (At) > 0, and we have 
tiiN 

/|t*A-,ut|< TN(At) < 
_ 

E 

Inf A' (At) inf A> (At) N eJA'N~i 
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As we increase N > No, sup TNq(L) -O 0, inf A' (/1) 6 (NO), and so 
P.I/JI-N /LeI[tN 

1 [INI - -O asN -oo. 
* The second case is when we have a double eigenvalue, which is characterized 

by 
A (,u*) 0, A' (,u*) 0 and A (,u*) 7 0. 

Because of the concavity of the AQi) at ,* , there are two cases. 
- ANN(P) is also concave and may not have zeroes. In this case we look for 

solutions inside the intervals defined by (4.2). 
- If A\N(AIN) has two zeroes then 

\N(lW ) = AN(PN)+ (P -UN) AN (NN) + 2t --1, [INNN(NN 

\N (A ) = \(/J) + (11 - IIN)IAN/I1N) + 2 (1-1)iNt) 

AN(t) )- A(N() = ( - AN)AN(*IN)+ 1' )-N) AN(A), 

(4.4) '(* -ULN) AN(r) +V - N)AN(AAN)- [ N-- AQ N)1 0 (, 

where \AN(A*)- Au(*)j < TN(u*). Clearly the coefficients of this qua- 

dratic are intervals, i.e., inf A\j(?]) ? AN(,) ? max A-"), and simi- 

larly 0 < TN(It*) < maxTN(r,). Therefore we can find an upper bound 
'eI -tt . 

for jP* - ,AN, using interval analysis. Since AN(LN) may have no roots 
in the neighbourhood of ,u*, the only practical way to locate double eigen- 
values is the interval defined by (4.2). In practice it is mnore convenient 
to be given N and then compute the truncation error TN (It) to find the 
intervals 'IPN defined by (4.2). 

5. EXAMPLES 

We shall consider problems defined by (1.1), where Q(x) is integrable. Recall 
that N represents the num-ber of points used in the Shannon-Whittaker sampling 
theorem. The positive eigenvalues are obtained by recovering the Hill discriminant 
from its sampled values. To this end we only need to compute the values (p1 (w, ,u) + 
9c(w,jt) for ,t kg, k = 0,1,...,N, which are obtained by solving the initial 
value problem (1.1) with Runge-Kutta 4-5, which is implemented with the symbolic 
manipulator Maple with precision set to 13 digits. 

Example 1: Let us choose w = 2, and 

0 0<x< 1/2 
q(x) :=< 1+ 1/2 < x < 7/4 , 

0 7/4 < x < 2. 
The square roots of the eigenvalues are listed below. 

N p, A2 A3 /4 A5 

5 0.5376360812 3.141592653 3.198533821 6.283185307 6.309309048 
13 0.5376389426 3.141592653 3.198655062 6.283185307 6.309851843 
19 0.5376389987 3.141592654 3.198665145 6.283185307 6.309892873 
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The enclosure for the first simiple eigenvalue ,l2 is given below. 

N Atmin Al Atmax 

5 0.5063 0.5376360812 0.5700 
13 0.5292 0.5376389426 0.5461 
19 0.5327 0.5376389987 0.5425 

* Example 2: q(x) := 2x(1 - x) and w = 1. 
The enclosures are given below. 

N [L ln-iin Al 1-1 nax 

4 0.576496 0.576890580 0.577287 
7 0.575138 0.576891292 0.578648 
15 0.576292 0.576891400 0.577491 
20 0.576496 0.576891408 0.577287 

N [L2,3 min A2 A3 A2,3 max 

4 6.29811294928 6.30777169387 6.31155085736 6.32991780134 
7 6.30116798050 6.30769833630 6.31163581017 6.32196796225 
15 6.30414770889 6.30768224351 6.31165451250 6.31645456422 
20 6.30496865578 6.30768111508 6.31165582479 6.31520080034 

For N = 20, an estimate of the truncation error is given by 

TN(U) < 27.10-6 when At E (6.304968, 6.3152008) 

TN(U) < 46.10-5 [LI E (0.5764,0.5774). 

1. A quick run of Sleign2, with a tolerance of 10-7, gives the following eigenvalues 

Sleign2 t /A 0.576919405 6.31198463 6.31204087 

which agrees with our results. Observe that all three square roots are within 
our enclosures. 

* Example -3: In this example w = 3 and 

(0 0 <x< 1, 

q(x)= 2- l< x<2, 
t 0 2<x<3. 

It is a simple task to compute the solutions p1 (t,[A) and 02(t,[A) explicitly, 
and so it follows that A\(At) is also obtained in a closed form. From the 
"exact" solution the first five eigenvalues are simple. The interpolation gives 
satisfactory results as can be seen from the following table. 

N At t12 A3 t14 A5 

6 0.6629613387 2.162705929 2.277446491 4.241533696 4.261003349 
11 0.6629773389 2.162572186 2.277814772 4.240002625 4.263173280 
21 0.6629803405 2.162548286 2.277880363 4.239796746 4.263474201 
Exact 0.6629808831 2.162544034 2.277892016 4.239762398 4.263524610 
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6. CONCLUSION 

With a simple analysis, and with values of solutions of initial value problems 
computed at a few values of the eigenparameter, we have computed the eigenvalues 
of a periodic problem with a certain estimated error. The main advantage is the 
recovery of an approximation of the Hill discriminant whose graph shows possible 
double eigenvalues. By increasing the number of sampling points, the truncation 
error is reduced and this allows us to zoom in on very close eigenvalues. Observe that 
the eigenvalues in Example 2, found by the code Sleign2, are within our enclosures. 

One of the main features of our scheme is the estimate on the truncation error, 
TN(Qt) and its use for the eigenvalues enclosures. It is also possible for TN([1) to 
include the phase and amplitude errors made on the sampling values. 
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